武漢企業(yè)管理培訓資訊:2012年考研數(shù)學零基礎復習知識點指導

武漢
當前位置:求學問校網(wǎng)首頁>武漢資訊>武漢企業(yè)管理培訓資訊

2012年考研數(shù)學零基礎復習知識點指導

來源:求學問校網(wǎng)     發(fā)表時間:2011-04-20     瀏覽 31

很多數(shù)學零基礎的同學想跨專業(yè)考研,最終因為數(shù)學這一攔路虎而放棄。大家都存在此類疑問,沒有基礎能學好數(shù)學嗎?事實上,根據(jù)跨考教育數(shù)學教研室李擂老師的輔導經(jīng)驗,

  只要考生端正心態(tài),將基礎知識打牢固,考研是沒有問題的。那么現(xiàn)階段,這類考生該如何著手準備復習?為了幫助大家提早入門,李擂老師對數(shù)學三門學科做一個精講。

  高等數(shù)學:高等數(shù)學的分值重,是三門課程中最為重要的一科,在學習高數(shù)的過程中,要注意每種題型的訓練,重點是總結,把在基礎階段不懂的知識點,強化記憶,然后系統(tǒng)地梳理知識點。認真研讀大綱要求,在復習的過程中明確考試重點,充分把握重點。

  高數(shù)第一章不定式的極限,考生要充分掌握求不定式極限的各種方法,比如利用極限的四則運算、兩個重要極限、洛必達法則等等,還要總結求極限過程中常用到的轉化、化簡的方法。對函數(shù)的連續(xù)性的探討也是考試的重點,這要求考生要充分理解函數(shù)連續(xù)的定義和掌握判斷連續(xù)性的方法。對于導數(shù)和微分,其實重點不是給一個函數(shù)求導數(shù),而是導數(shù)的定義,也就是抽象函數(shù)的可導性,理清連續(xù)、可導、可微之間的關系,分清一元與多元的異同。對于積分部分,定積分、分段函數(shù)的積分、帶絕對值的函數(shù)的積分等各種積分的求法都是重要的題型,在求積分的過程中,一定要注意積分的對稱性,利用分段積分去掉絕對值把積分求出來。中值定理一般每年都要考一個題的,多看看以往考試題型,研究一下考試規(guī)律。對于微分部分,隱函數(shù)的求導,復合函數(shù)的偏導數(shù)等是考試的重點。二重積分的計算,當然數(shù)學一里面還包括了三重積分,掌握積分區(qū)域具有可加性、二重積分對稱性的應用、二重積分直角坐標和極坐標的變換、二重積分轉換成累次積分計算這些知識點。另外還有曲線和曲面積分,這是數(shù)一必考的重點內容。一階微分方程,掌握幾個教材中的幾種類型的求解就可以了。還有無窮級數(shù),要掌握判別斂散性、冪級數(shù)的展開和求和常用的方法和技巧。

  線性代數(shù):線性代數(shù)考試題型不多,計算方法比較初等,但是往往計算量比較大,導致很多考生對線性代數(shù)感到棘手。從理論的角度出發(fā),線性代數(shù)的很多概念和性質之間的聯(lián)系很多,特別要根據(jù)每年線性代數(shù)的兩道大題考試內容,找出所涉及到的概念與方法之間的聯(lián)系與區(qū)別。例如向量組的秩與矩陣的秩之間的聯(lián)系,向量的線性相關性與齊次方程組是否有非零解之間的聯(lián)系,向量的線性表示與非齊次線性方程組解的討論之間的聯(lián)系,實對稱陣的對角化與實二次型化標準形之間的聯(lián)系等。掌握他們之間的聯(lián)系與區(qū)別,對做線性代數(shù)的兩個大題在解題思路和方法上會有很大的幫助。

  復習過程中,綜合掌握“一條主線,兩種運算,三個工具”。一條主線是解線性方程組,兩種運算是求行列式、矩陣的初等行(列)變換,三個工具是行列式、矩陣、向量。其中,向量組線性相關性是難點,要理解記憶各條定理,理清其中關系,多做題鞏固知識點。特征向量與二次型雖不難,但年年必考,計算能力要跟上,多做題才能提高正確率。

  概率論與數(shù)理統(tǒng)計:概率論與數(shù)理統(tǒng)計課程的主要特點是概念和公式繁多,章節(jié)的關系松散,應用題比較抽象,所以復習時要注重這些概念的理解。第一、二章是基礎,很少單獨命題,經(jīng)常結合后面的章節(jié)進行考察,但這兩章要深刻理解,只有這部分內容透徹理解后面的內容才能容易掌握。概率部分要重點掌握的是二維隨機變量的概率分布、邊緣分布、條件分布、獨立性等概念,要把定義和對應計算公式掌握的很熟練。另外,數(shù)學期望、方差、協(xié)方差、相關系數(shù)等數(shù)字特征的概念及計算公式也要重點復習,因為這幾個概念是每年必考,并且主要考計算。最后,這部分難點是多維隨機變量的函數(shù)的分布。這個考點最近幾年每年必考,并且主要以大題的形式出現(xiàn)。雖然是難點,但是方法還是比較固定的,掌握每種題型的方法即可。大數(shù)定律和中心極限定理不是考試的重點,考綱要求是了解,所以只要掌握定理的條件和結論。數(shù)理統(tǒng)計部分主要圍繞三大統(tǒng)計量分布,點估計是這部分內容的重難點,經(jīng)常會考解答題。統(tǒng)計量的評選標準中的無偏估計要重點復習,有效性和相合性了解即可。區(qū)間估計和假設檢驗這么多年考的比較少,所以也是了解一下,找?guī)讉€小題做一下就行了。